An Interpretable and Scalable Recommendation Method Based on Network Embedding
نویسندگان
چکیده
منابع مشابه
Link Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملHeterogeneous Information Network Embedding for Recommendation
Due to the flexibility in modelling data heterogeneity, heterogeneous information network (HIN) has been adopted to characterize complex and heterogeneous auxiliary data in recommender systems, called HIN based recommendation. It is challenging to develop effective methods for HIN based recommendation in both extraction and exploitation of the information from HINs. Most of HIN based recommenda...
متن کاملA Hybrid Personalized Recommendation Method Based on Dynamic Bayesian Network
With the rapid growth and wide application of electronic commerce, lots of information comes forth to people. However, our experiences and knowledge often do not enough to process the vast amount of information. The problem of obtaining useful information becomes more and more serious. To deal with the problem, the personalized service and recommender system play a more important role in many f...
متن کاملYoda: An Accurate and Scalable Web-Based Recommendation System
Recommendation systems are applied to personalize and customize the Web environment. We have developed a recommendation system, termed Yoda, that is designed to support large-scale Web-based applications requiring highly accurate recommendations in real-time. With Yoda, we introduce a hybrid approach that combines collaborative ltering (CF) and content-based querying to achieve higher accuracy....
متن کاملDeep Coevolutionary Network: Embedding User and Item Features for Recommendation
Recommender systems often use latent features to explain the behaviors of users and capture the properties of items. As users interact with different items over time, user and item features can influence each other, evolve and co-evolve over time. To accurately capture the fine grained nonlinear coevolution of these features, we propose a recurrent coevolutionary feature embedding process model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2891513